Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA°)

$U_{\text {iso }}$ for $\mathrm{C} 12-\mathrm{C} 19 ; U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i}, \mathrm{a}_{j}$ for all others.				
	x	y	z	$U_{\text {eq }}$
Sn	0	0.34721 (5)	1/4	0.0192 (2)
S	-0.08497 (14)	0.3195 (2)	0.49334 (9)	0.0596 (5)
N1	-0.0316 (3)	0.3479 (4)	0.3620 (2)	0.0276 (10)
C1	-0.0538 (3)	0.3369 (5)	0.4164 (3)	0.0253 (12)
C2	0	0.1315 (7)	1/4	0.021 (2)
C3	0.0138 (3)	0.0571 (5)	0.3125 (3)	0.0267 (12)
C4	0.0150 (3)	-0.0819 (6)	0.3130 (3)	0.0346 (13)
C5	0	-0.1512 (9)	1/4	0.043 (2)
C6	0.1190 (3)	0.4556 (5)	0.2838 (2)	0.0196 (10)
C7	0.1208 (3)	0.5559 (5)	0.3343 (2)	0.0251 (11)
C8	0.1997 (3)	0.6266 (5)	0.3569 (3)	0.0319 (13)
C9	0.2754 (3)	0.5959 (6)	0.3289 (3)	0.0337 (13)
C10	0.2740 (3)	0.4967 (6)	0.2784 (3)	0.0364 (14)
C 11	0.1962 (3)	0.4284 (6)	0.2556 (3)	0.0344 (13)
N2	-1/4	3/4	1/2	0.038 (2)
C12 \dagger	-0.2432 (7)	0.7474 (10)	0.5806 (3)	0.045 (3)
C13 \dagger	-0.2986 (15)	0.860 (2)	0.5051 (8)	0.116 (9)
C14 \dagger	-0.2461 (7)	0.8920 (7)	0.4796 (6)	0.051 (3)
C15 \dagger	-0.1710 (9)	0.9723 (11)	0.5179 (7)	0.056 (4)
C16 \dagger	-0.3392 (5)	0.7006 (10)	0.4731 (6)	0.050 (3)
C17 \dagger	-0.3657 (9)	0.5682 (13)	0.5027 (8)	0.065 (4)
C18 \dagger	-0.1801 (7)	0.6679 (13)	0.4816 (6)	0.080 (5)
C19 \dagger	-0.1677 (13)	0.682 (2)	0.4028 (7)	0.086 (6)

\dagger Partial occupancy (see Comment).
Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Sn}-\mathrm{C} 6$	$2.135(4)$	$\mathrm{S}-\mathrm{Cl}$	$1.622(6)$
$\mathrm{Sn}-\mathrm{C} 2$	$2.142(7)$	$\mathrm{N} 1-\mathrm{Cl}$	$1.147(7)$
$\mathrm{Sn}-\mathrm{N} 1$	$2.268(5)$		
$\mathrm{C} 6-\mathrm{Sn}-\mathrm{C}^{\mathrm{i}}$	$119.4(3)$	$\mathrm{C} 2-\mathrm{Sn}-\mathrm{N} 1$	$90.19(11)$
$\mathrm{C} 6-\mathrm{Sn}-\mathrm{C}^{1}$	$120.28(13)$	$\mathrm{N} 1^{i}-\mathrm{Sn}-\mathrm{N} 1$	$179.6(2)$
$\mathrm{C} 6-\mathrm{Sn}-\mathrm{N} 1^{\mathrm{i}}$	$90.2(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Sn}$	$172.5(4)$
$\mathrm{C} 6-\mathrm{Sn}-\mathrm{N} 1$	$89.6(2)$	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{S}$	$179.3(5)$

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.
Data were corrected for Lorentz and polarization effects but not for absorption. The diffractometer was fitted with an Oxford Cryosystems low-temperature device (Cosier \& Glazer, 1986). Absence of crystal decay in the X-ray beam was confirmed by checking equivalent reflections at the beginning and end of the data collection period of $c a 8 \mathrm{~h}$. All non-H atoms were refined with anisotropic displacement parameters, except the C atoms of the disordered ethyl substituents in the Et_{4}^{+}cation which were refined isotropically with $\mathrm{C}-\mathrm{N}$ and $C-C$ bond lengths restrained to 1.47 (1) and 1.52 (1) \AA, respectively.
Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1994).

The use of the EPSRC X-ray Crystallographic Service at the University of Wales, Cardiff, is gratefully acknowledged.

[^0]
References

Charland, J.-P., Gabe, E. J., Khoo, L. E. \& Smith, F. E. (1989). Polyhedron, 8, 1897-1901.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Day, R. O., Holmes, J. M., Shafieezad, S., Chandrasekhar, V. \& Holmes, R. R. (1988). J. Am. Chem. Soc. 110, 5377-5383.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Wharf, I. \& Simard, M. G. (1991). Acta Cryst. C47, 1605-1609.
Zsolnai, L. (1994). ZORTEP. Interactive Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1996). C52, 319-321

Chloro(ethylenediamine)(6-phenylimidazo-[2,1-b]thiazole- N^{7})platinum(II) Nitrate

Georgia M. Arvantis, ${ }^{a}$ * Amy E. Griffitts, ${ }^{a}$
Stephen P. Baffic ${ }^{a}$ and Douglas M. Ho ${ }^{b}$
${ }^{a}$ Department of Chemistry, Trenton State College, Hillwood Lakes, New Jersey 08650, USA, and ${ }^{\text {D Department of }}$ Chemistry, Princeton University, Princeton, New Jersey 08544, USA

(Received 23 September 1994; accepted 24 July 1995)

Abstract

Platination of 6-phenylimidazo[2,1-b]thiazole at the imidazole N atom to give chloro(ethylenediamine)(6phenylimidazo $[2,1-b]$ thiazole)platinum(II) nitrate, [$\mathrm{PtCl}-$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)\right] \mathrm{NO}_{3}$, is accompanied by a rotation of $49.3(8)^{\circ}$ of the phenyl ring and a loss of extended conjugation in the normally planar 6 -phenyl-imidazo[2,1-b]thiazole molecule.

Comment

Cisplatin, cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, has long been used in the treatment of various forms of cancer (Loehrer \& Einhorn, 1984). The reported activities of both platinum triamine complexes (Hollis, Amundsen \& Stern, 1989) and platinum imidazole and thiazole compounds (van Beusichem \& Farrell, 1992) in preliminary antitumor screens imply that additional structure-activity relationships for platinum-based therapeutic agents should be established. Therefore, we prepared a series of platinum triamine imidazothiazole complexes as part of a program to map out the relationships between structure and antitumor activity for this new class of potential chemotherapeutic agents (Arvanitis, Berardini, Parkinson \& Schneider, 1993). The title compound, (I), is a member of that series.

Compound (I) is a square-planar Pt triamine complex of 6 -phenylimidazo[2,1-b]thiazole. A displacement ellipsoid plot is given in Fig. 1 and a packing diagram in Fig. 2. The bond distances and angles at the Pt^{11} atom are normal, accounting for slight distortions to accommodate the chelating ethylenediamine moiety (Iball \& Scrimgeour, 1974; Lippert, Lock \& Speranzini, 1981). The imidazo $[2,1-b]$ thiazole ring is planar and the dihedral angle between the Pt-coordination plane and the imidazothiazole plane is 65.4°. The Pt atom is positioned $0.30 \AA$ out of the imidazothiazole best plane.

The most interesting structural feature is the orientation of the phenyl substituent. In the free ligand, the phenyl and imidazothiazole rings are coplanar due

Fig. 1. Structure and labeling scheme for $\left[\mathrm{PtCl}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)\right]$ NO_{3} showing 50% probability displacement ellipsoids.

Fig. 2. Contents of the unit cell.
to conjugation effects (Cavalca, Domiano \& Musatti, 1972). This coplanarity is compromised in compound (I) in favor of minimizing the Pt to ortho- H nonbonded contacts. The result is a substantial increase in the phenyl-imidazothiazole torsion angle $\left[-0.8^{\circ}\right.$ in the free ligand versus 49.3 (8) ${ }^{\circ}$ in compound (I)] and a slight lengthening of the phenyl-imidazothiazole bond [1.450 (7) versus 1.483 (7) \AA A. The latter approaches that of the platinum complex with the saturated derivative 6 -phenyl-2,3,5,6-tetrahydroimidazo[2,1-b]thiazole (Arvanitis et al., 1993). Both observations are consistent with a slight loss of conjugation between the phenyl and imidazothiazole rings upon complexation. Biological assays and structural studies on additional platinum triamine imidazothiazole derivatives are in progress to correlate these spatial and electronic changes with variations in anticancer activity.

Experimental

The procedure used for synthesis is a modification of the methods of Lippert (Lippert et al., 1981) and Hollis (Hollis et al., 1989). 300 mg (1 mmol) of $\mathrm{PtCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)$ was dissolved in 20 ml of dimethylformamide (DMF). 169 mg (1 mmol) of AgNO_{3} was added and the mixture was stirred overnight in the dark. The mixture was filtered to remove AgCl and 200 mg (1 mmol) of 6-phenylimidazo[$2,1-b$]thiazole in 10 ml of DMF was added to the filtrate. After 12 h the solvent was removed under reduced pressure and the resulting product was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and recrystallized from water. The product was then dissolved in a minimum amount of hot water, loaded onto a Waters Sep-Pak cartridge (C18) and eluted with 10 ml of water, 5 ml of a 10% methanol solution, and 5 ml of a 20% methanol solution. The eluate was collected in 1 ml increments. The solvent was allowed to evaporate from the fractions. An increment eluted with the 10% methanol solution yielded colorless needle-like crystals. The crystal density D_{m} was obtained by suspension in a $\mathrm{CCl}_{4}-\mathrm{CHBr}_{3}$ mixture.

Crystal data

$\left[\mathrm{PtCl}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)\right]-$ NO_{3}
$M_{r}=552.91$
Triclinic
$P \overline{1}$
$a=6.872(1) \AA$
$b=9.960(2) \AA$
$c=12.782(2) \AA$
$\alpha=91.72(1)^{\circ}$
$\beta=92.14(1)^{\circ}$
$\gamma=94.31(1)^{\circ}$
$V=871.3(2) \AA^{3}$
$Z=2$
$D_{x}=2.108 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=2.055 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Siemens $P 4$ diffractometer
ω scans

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=15.0-18.5^{\circ}$
$\mu=8.347 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Needle
$0.25 \times 0.15 \times 0.10 \mathrm{~mm}$
Colorless
$R_{\text {int }}=0.0168$
$\theta_{\text {max }}=25.05^{\circ}$
Absorption correction:
ψ scan
$T_{\min }=0.0898, T_{\max }=$
0.1387
3360 measured reflections
3078 independent reflections
2773 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0230$
$w R\left(F^{2}\right)=0.0502$
$S=1.077$
3078 reflections
217 parameters
H atoms refined as riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0289 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

$$
\begin{aligned}
& h=0 \rightarrow 8 \\
& k=-11 \rightarrow 11 \\
& l=-15 \rightarrow 15 \\
& 3 \text { standard reflections } \\
& \quad \text { monitored every } 97 \\
& \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.638 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.829 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Pt	0.05135 (3)	0.28862 (2)	0.11701 (1)	0.03267 (7)
Cl	-0.2444 (2)	0.3823 (1)	0.0999 (1)	0.0500 (3)
N1	0.3091 (6)	0.2016 (4)	0.1199 (3)	0.045 (1)
Cl	0.3444 (9)	0.1550 (6)	0.0108 (4)	0.054 (1)
C2	0.2940 (9)	0.2631 (6)	-0.0622 (4)	0.053 (1)
N2	0.0962 (7)	0.3028 (4)	-0.0382 (3)	0.045 (1)
N3	0.0199 (6)	0.2627 (4)	0.2715 (3)	0.0359 (9)
C3	-0.1110 (7)	0.1745 (5)	0.3104 (4)	0.038 (1)
S	-0.3066 (2)	0.0710 (1)	0.2618 (1)	0.0462 (3)
C4	-0.3393 (8)	0.0127 (6)	0.3878 (4)	0.051 (1)
C5	-0.2107 (8)	0.0695 (5)	0.4594 (4)	0.047 (1)
N4	-0.0799 (6)	0.1630 (4)	0.4143 (3)	0.041 (1)
C6	0.0814 (8)	0.2482 (5)	0.4449 (4)	0.045 (1)
C7	0.1421 (7)	0.3087 (5)	0.3566 (4)	0.038 (1)
C8	0.3113 (8)	0.4080 (5)	0.3452 (4)	0.041 (1)
C9	0.2855 (9)	0.5273 (5)	0.2945 (4)	0.053 (1)
C10	0.4442 (9)	0.6204 (6)	0.2854 (5)	0.061 (2)
C11	0.6243 (9)	0.5949 (6)	0.3246 (4)	0.056 (2)
C12	0.6504 (8)	0.4776 (6)	0.3744 (4)	0.053 (1)
C13	0.4927 (8)	0.3836 (5)	0.3866 (4)	0.045 (1)
N5	0.1489 (7)	-0.0980 (5)	0.2393 (4)	0.048 (1)
Ol	0.2435 (6)	-0.0079 (4)	0.2920 (3)	0.064 (1)
O2	0.0363 (6)	-0.1817 (4)	0.2801 (4)	0.071 (1)
O3	0.1696 (9)	-0.1018 (5)	0.1440 (4)	0.094 (2)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{P}-\mathrm{N} 3$	$2.017(4)$	$\mathrm{C} 3-\mathrm{N} 4$	$1.347(6)$
$\mathrm{P}-\mathrm{N} 2$	$2.026(4)$	$\mathrm{C} 3-\mathrm{S}$	$1.716(5)$
$\mathrm{P}-\mathrm{N} 1$	$2.029(4)$	$\mathrm{S}-\mathrm{C} 4$	$1.745(5)$
$\mathrm{Pt}-\mathrm{Cl}$	$2.305(1)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.331(7)$
$\mathrm{N} 1-\mathrm{Cl}$	$1.491(7)$	$\mathrm{C} 5-\mathrm{N} 4$	$1.397(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.497(8)$	$\mathrm{N} 4-\mathrm{C} 6$	$1.382(6)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.484(7)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.360(7)$
$\mathrm{N} 3-\mathrm{C} 3$	$1.330(6)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.483(7)$
$\mathrm{N} 3-\mathrm{C} 7$	$1.393(6)$		
$\mathrm{N} 3-\mathrm{Pt}-\mathrm{N} 2$	$175.6(2)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{N} 4$	$111.4(4)$
$\mathrm{N} 3-\mathrm{Pl}-\mathrm{N} 1$	$92.0(2)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{S}$	$136.3(4)$
$\mathrm{N} 2-\mathrm{Pt}-\mathrm{N} 1$	$84.0(2)$	$\mathrm{N} 4-\mathrm{C} 3-\mathrm{S}$	$112.3(3)$
$\mathrm{N} 3-\mathrm{Pt}-\mathrm{Cl}$	$92.0(1)$	$\mathrm{C} 3-\mathrm{S}-\mathrm{C} 4$	$88.8(2)$
$\mathrm{N} 2-\mathrm{Pt}-\mathrm{Cl}$	$91.9(1)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{S}$	$113.8(4)$
$\mathrm{N} 1-\mathrm{Pt}-\mathrm{Cl}$	$175.5(1)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 4$	$111.0(5)$
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{Pt}$	$107.6(3)$	$\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 6$	$107.6(4)$
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	$108.5(4)$	$\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5$	$114.0(4)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cl}$	$108.1(4)$	$\mathrm{C} 6-\mathrm{N} 4-\mathrm{C} 5$	$138.3(4)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Pt}$	$110.4(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 4$	$106.0(4)$

$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 7$	$105.3(4)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 3$	$109.7(4)$
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{Pt}$	$123.9(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$128.3(5)$
$\mathrm{C} 7-\mathrm{N} 3-\mathrm{Pt}$	$129.8(3)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 8$	$122.0(4)$

Data collection: Siemens P3VAX system. Cell refinement: Siemens P3VAX system. Data reduction: SHELXTLPlus (Sheldrick, 1991). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus. Software used to prepare material for publication: SHELXL93.

This work was supported by the National Institutes of Health, grant No. CA 56915 from the National Cancer Institute, and by American Cyanamid Company.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SZ1032). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Arvanitis, G. M., Berardini, M. E., Parkinson, G. N. \& Schneider, B. S. (1993). Acta Cryst. C49, 1246-1248.

Beusichem, M. van \& Farrell, N. (1992). Inorg. Chem. 31, 634-639.
Cavalca, L., Domiano, P. \& Musatti, A. (1972). Cryst. Struct. Commun. 1, 345-348.
Hollis, L. S., Amundsen, A. R. \& Stern, E. W. (1989). J. Med. Chem. 32, 128-136.
Iball, J. \& Scrimgeour, S. H. (1974). Recent Results Cancer Res. 48, 26.

Lippert, B., Lock, C. J. L. \& Speranzini, R. A. (1981). Inorg. Chem. 20, 335-342.
Loehrer, P. J. \& Einhorn, L. H. (1984). Ann. Intl Med. 100, 704-713.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 321-325

Dipyridiniomethane cis- and trans-Difluorotetrachloroosmate(IV), cis- and trans$\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{OsCl}_{4} \mathrm{~F}_{2}\right]$

Clemens BruHn and Wilhelm Preetz

Institut für Anorganische Chemie, Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
(Received 5 June 1995; accepted 31 July 1995)

Abstract

In the structures of N, N^{\prime}-methylenedipyridinium cisdifluorotetrachloroosmate(IV), (I), and N, N^{\prime}-methylenedipyridinium trans-difluorotetrachloroosmate(IV),

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: BM1025). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

